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Abstract 

The sensitivity to initial and boundary conditions of monthly mean tropical 

forecasts on the long-range (1-14 weeks) during northern hemisphere winter is studied 

with a numerical model. Five predictability experiments with different combinations of 

initial conditions and prescribed ocean boundary conditions are conducted to investigate 

the temporal and spatial characteristics of the perfect model forecast skill. It is shown that 

initial conditions dominate a tropical forecast during the first three weeks, and that they 

influence a forecast for at least eight weeks. The initial condition effect is strongest over 

the eastern hemisphere and during years when the El Niño Southern Oscillation (ENSO) 

phenomenon is weak. This high sensitivity to initial conditions is related to a complex 

combination of dynamic and thermodynamic effects, from which a positive internal 

feedback of large-scale convective anomalies appears to be the most important. At lead 

times of more than three weeks boundary forcing is the main contributor to tropical 

predictability. This effect is particularly strong over the western hemisphere and during 

ENSO. Using persisted instead of observed sea surface temperatures leads to useful 

forecast results only over the western hemisphere and during ENSO. 
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1. Introduction 

The skill of numerical weather prediction models in forecasting the tropics at short 

to long ranges has always tended to lag that in the mid-latitudes (Kanamitsu, 1985; 

Reynolds et al., 1994). Forecasting tropical variations is not only complicated by the lack 

of good observations, but also by the relative complexity of tropical dynamics, which are 

governed by different balances than the extratropics. Outside the tropics, quasi-geostrophic 

theory provides a relatively simple theoretical framework for an overall understanding of 

large-scale motions. In the tropics, however, this concept breaks down, since pressure 

gradients and the Coriolis parameter are too small for motions to be in geostrophic balance. 

Other effects like friction, and diabatic and latent heating become important. The release of 

latent heat associated with precipitation from convective cloud systems represents the 

dominant source of energy in the tropics. This process, however, is difficult to simulate, 

and therefore represents a great challenge for our models. 

The goal of this study is to characterize the spatial and temporal structure of the 

predictability in the tropics, and to find out how important the contributions of initial and 

boundary conditions are for such predictability. On time scales of seasons or longer, the 

tropics are certainly dominated by the forcing from the sea surface temperatures (SSTs) 

underneath (e.g. Shukla, 1998). However, on sub-seasonal time scales, which are the focus 

of this study, the relative role of initial and boundary conditions is more complicated. 

Recently, Reichler and Roads (2003, thereafter referred to as RR) found that in the tropics 

initial conditions dominated a numerical forecast for several weeks. This relatively long 

time scale was surprising and prompted further analysis aimed at finding the reasons for 

this large sensitivity to initial conditions. As we will see, there are mainly two mechanisms 
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by which initial conditions are important for the tropical forecasting problem: First, 

because of the intraseasonal or Madden-Julian Oscillation (MJO; Madden and Julian, 

1994), and second, because of the slow response of the tropical atmosphere to changes in 

boundary conditions. Predictability issues related to the MJO are the subject of a 

companion paper (Reichler and Roads, 2004). There, we investigate tropical predictability 

at periodicities of 30-60 days, and find that initial conditions are crucial for predicting the 

MJO, but that there exist important responses to external SST forcing. 

The present paper is focused on the atmospheric predictability of monthly averages 

at lead times from 15 days to one season. This time scale has not received much attention 

in previous studies of tropical predictability, which were focused almost exclusively on the 

predictability of the intraseasonal oscillation. The problem of predicting monthly averages 

is influenced by both interannual variability related to the El Niño Southern Oscillation 

(ENSO) phenomenon, and by intraseasonal variability related to the MJO. However, since 

the MJO exhibits variability on a broad spectrum with periods between 30 and 90 days, 

much of the MJO variability is removed by taking monthly averages.  

We used a model based approach to answer our questions and conducted five 

idealized ensemble experiments with a complex atmospheric general circulation model 

(AGCM). Each experiment was forced with different combinations of initial and boundary 

conditions to determine individual and cumulative contributions of each to predictability. 

Ensembles of integrations were performed for many years to separate unpredictable noisy 

components from the various signals. We analyzed predictability of four representative 

atmospheric variables by measuring their so called “perfect model forecast skill”. Under 

this approach, model output is verified against the output of a control experiment using the 
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same model (Buizza, 1997, Anderson et al., 1999). This eliminated complications with 

model dependent errors, and allowed us to focus exclusively on the key questions of this 

study. Even though the perfect model forecast skill is only one way to characterize the 

predictability of a specific variable, we will call it from now on simply “predictability”. 

In section 2, we briefly describe the model, experiments, and analysis techniques 

used for this study. In section 3 we present a short discussion of the model’s climatology in 

comparison with observational data. Section 4 discusses the temporally and spatially 

varying character of tropical predictability using different initial and boundary conditions. 

Section 5 investigates further aspects of the long initial condition memory. Summary and 

conclusions are provided in section 6. 

2. Methodology 

a. Model and experiments 

The AGCM of this study was the National Centers for Environmental Predictions 

(NCEP) seasonal forecasting model (e.g., RR; Kanamitsu et al., 2002). We used the model 

at T42 resolution with 28 vertical levels to conduct five ensemble experiments. Each 

experiment consisted of many 107 days long continuous simulations of the northern 

hemispheric winter season from December 15th to the end of the following March. The 

experiments were carried out in an ensemble mode, with an ensemble size of 20 for the 

control simulation “ICBC”, and 10 for the other experiments. A total of 22 winter seasons 

(1979-2000) were simulated, so that each experiment consisted of a total of 220 (440) 

continuous runs. 

The members of one experiment and year were forced with identical boundary 

conditions, but were started from slightly perturbed initial conditions. To create those 
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initial conditions, two continuous AMIP-type base runs with either observed (BASE-O) or 

climatological (BASE-C) ocean boundary conditions were carried out. For each year, the 

appropriate initial conditions for the subsequent experiments were derived from those base 

runs and perturbed by using the breeding method (Toth and Kalnay, 1997). The resulting 

mean rms error between individual perturbed initial conditions at the 850 (200) hPa level 

over the tropics was ~3 (6) m/s for the u and v wind components, and ~14 (25) m for the 

geopotential height. The interested reader is referred to RR for more specific information 

about the implementation of the breeding method. 

The five ensemble experiments of this study differed only in the specification of 

their initial and boundary conditions (see Table 1). The experiments were global, and 

initial and boundary conditions were modified globally. However, in the analysis presented 

here, only the local response in the tropics was examined. We identify the 5 experiments 

by specific acronyms, which indicate the quality of initial (IC) and boundary conditions 

(BC) used.   

Experiment “ICBC” was forced with observed ocean boundary conditions, and was 

started from “anomalous” initial conditions of BASE-O. Under the perfect model 

approach, all experiments are verified against ICBC. ICBC verified against itself is 

therefore similar to a classical predictability experiment where the divergence of solutions 

starting from slightly different initial states is measured. The only difference is that ICBC 

uses anomalous boundary forcing, which helps to support the anomalous initial state. 

Experiment “IC” used the same perfect initial conditions as ICBC, but was forced with 

climatological ocean and land boundary conditions. This experiment was designed to 

measure the effect of anomalous initial conditions, which are created by, but which are not 
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supported by boundary forcing. Experiment “BC” represents the complementary 

experiment to IC and was designed to study the effects of boundary forcing alone. It was 

started from randomly chosen “climatological” initial conditions from BASE-C, but was 

forced with the same perfect boundary conditions as ICBC. Experiment “ICP” was again 

started from the same initial conditions as ICBC, but using persisted ocean boundary 

conditions. Persisted SSTs means that the SST anomaly at day 0 of a specific seasonal 

simulation is simply persisted around the seasonal cycle during the whole integration. This 

is a common alternative to more sophisticated ocean forecast techniques (e.g., Mason et al., 

1999; Roads et al., 2001), since at time scale of out to three month it is usually more 

accurate than other forecast methods (e.g. Goddard and Mason, 2002). Finally, experiment 

“iBC” was started from initial conditions by integrating ICBC for one whole year. These 

initial conditions have completely lost their memory from the previous year, but they are 

adjusted to the boundary forcing at the new initialization time. In this respect, experiment 

iBC was comparable to an ensemble of continuous AMIP-type integrations, and to the 

current operational seasonal forecasting methodology at the International Research 

Institute (IRI). The motivation for iBC was to find out how much predictability might be 

lost by excluding the effects of perfect synoptic scales in the initial conditions.  

b. Data 

The ocean boundary conditions for the five experiments of this study were 

prescribed using observational data. The SSTs came from the UKMO Global Ice and Sea 

Surface Temperature (GISST) data set for the 1950-1981 period, and afterwards from 

Reynolds SSTs (Reynolds and Smith, 1994) with a weekly temporal resolution. The sea ice 

data were taken from daily NCEP/NCAR reanalysis (Kalnay et al. 1996; Kistler et al., 
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2001). Climatological ocean boundary conditions were derived by averaging the observed 

fields over the 50 year period 1950-1999. The land boundary conditions were either 

determined internally by the land surface model of the AGCM, or prescribed from the 

NCEP/DOE reanalysis-2 (Kanamitsu et al., 2002) by averaging from 1979 to 1998. For the 

verification of the model climatologies, either NCEP/NCAR reanalysis, or CMAP data 

(Climate Prediction Center Merged Analysis of Precipitation: Xie and Arkin, 1997) were 

used. 

c. Calculation of forecast skill 

We estimated the atmospheric predictability from the forecast skill of four 

representative variables: The velocity potential at 200 hPa (χ200), the zonal wind at 850 

hPa (U850), the temperature at 850 hPa (T850), and the precipitation rate. Before the 

forecast skill was calculated from the simulation time series, anomalies were computed by 

removing the daily climatology of the corresponding simulation. Next, the time series were 

filtered in time by taking 31-day running averages. This procedure has a low-pass 

characteristic with a cut-off period of about 60 days. It therefore retained interannual 

variability that is mostly related to ENSO, and intraseasonal variability at periodicities of 

60 days and more, which is largely related to the tropical intraseasonal oscillation. Since 

filtering of the beginning and end of the seasonal time series would have required 

additional data, the first and last 15 days were excluded from our calculations.  

The forecast skill between an experiment and the control run ICBC was estimated 

in two ways. First, the temporal correlation (TC) of the year to year time series for a 

certain lead time was used to construct maps of forecast skill. Second, the spatial anomaly 

correlation (AC) over the tropics was calculated from data for the same lead time and year, 
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and then averages were taken over the various years. Throughout this study, the tropics 

were defined as the region from 0 to 360º longitude and from 30ºN to 30ºS latitude. To 

mimic real forecast situations, the correlations were calculated between the 10-member 

ensemble mean of the individual experiment under consideration and individual 

realizations of the control experiment ICBC. Since 20 members of ICBC were available as 

verification, a more robust skill estimate was obtained by selecting each member of ICBC 

as verification, and by averaging over the individual outcomes. The verification of ICBC 

with itself gave the upper bound of perfect model predictability, since in this case 

boundary conditions were perfect, and initial conditions were almost perfect. Only the 

small perturbations in the initial conditions led to a divergence of the solutions for the 

various ensemble members, which contributes to a decrease in predictability over time. 

The Appendix explains in more detail the treatment of the data and the calculation of the 

forecast skill. 

The forecast base period was 1979-2000, but in some of our analysis the forecast 

skill was calculated only over a subset of years. For example, strong ENSO warm years 

were the winters of ’83, ’87, ’92 and ’98, and strong cold years were ’85, ’89 and ’99 and 

’00. Neutral to weak ENSO years were all the other 14 years from the 1979-2000 period.  

3. Observed and simulated tropical climate  

To find out how realistic the simulations of the AGCM were, we describe in this 

section the climatology and the interannual variability of the four variables from the 

perfect experiment ICBC and compare them with observational data. The analysis is 

focused on January monthly means and covers the 22 year period from 1979 to 2000. For 

simulation ICBC, the climatology was derived from the average of all 20 ensemble 
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members, and the interannual variability was calculated for individual members and then 

averaged together. 

In Fig. 1, the observed January climatologies are compared with that from 

simulation ICBC. In general, the structure and amplitude of all four simulated variables 

compared reasonably well with observations, in particular for U850 and T850 (middle 

panels). Differences between model and reanalysis were most noticeable for χ200 (upper 

panels). While the model simulated three distinct centers of convective activity over the 

Indian Ocean, the warm pool region, and South America, the reanalysis did not show as 

clear a separation into three different regions. Moreover, the divergent circulation in the 

model was too strong over the dateline, and too weak over the Indian Ocean. Beside model 

deficiencies, these discrepancies may be in part attributable to the fact that the divergent 

circulation is not really an observed quantity. It largely depends on the convective 

parameterization scheme of the used model, which is different in the reanalysis model and 

the model of this study. The lower panels of Fig. 1 compare the amount of simulated and 

observed tropical precipitation. This quantity is also strongly related to convective activity. 

In this case the observations were derived from satellite and rain gauge data (CMAP) and 

did not contain any model biases. The largest model deficits existed over South America 

with too much rainfall, and over the Indian Ocean and maritime continent with too little 

rainfall. Over the Indian Ocean, the model exhibited a double inter tropical convergence 

zone structure, a problem which is typical for many AGCMs. Note, however, that the 

precipitation rate near the date line was about right, and that the characteristic South 

Pacific convergence zone was simulated quite well. 
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Fig. 2 compares the interannual variability between observations (left panels) and 

simulation ICBC (right panels). In general, the model showed a larger interannual 

variability than the observational data, in particular for χ200 (upper panels). For this 

quantity, the simulated variability was much larger than in reanalysis, especially over the 

Indian Ocean and the warm pool region. Again, it may well be that the reanalysis 

underestimated the χ200 variability, since the AGCM of this study presumably uses a 

physically more realistic convection scheme (relaxed Arakawa-Schubert, RAS) than the 

reanalysis (simplified Arakawa-Schubert, SAS). This explanation is supported by the fact 

that the differences between simulated and observed rainfall variability (lower panels) 

from CMAP data are much smaller than for χ200. 

We were also interested to find out how much intraseasonal variability remained in 

the data after taking monthly means. We depict in Fig. 3 the ratio between the interannual 

and the intraseasonal variance (VIA/VIS) of χ200 for both the reanalysis and experiment 

ICBC. The intraseasonal variability is by about a factor of 2-4 smaller than the interannual 

variability. As expected, the ratio is largest over the equatorial Pacific. Again, the large 

scale structures for reanalysis and model data are very similar. 

In summary, the model did not reproduce exactly every aspect of the observed 

atmosphere, but it captured quite well the basic patterns. Therefore, we are confident that 

this AGCM is an adequate tool for the investigation of tropical low-frequency 

predictability. 

4. Analysis of forecast skill  

In the following section we examine the tropical long-range forecast skill of 

monthly means from our five model experiments. First, we show geographical maps of 
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temporal correlation at a fixed lead time interval of one month, next we examine the spatial 

anomaly correlation over the tropical domain in its entire temporal evolution, and finally 

we analyze the interannual variations in forecast skill. 

a. Spatial structure  

Fig. 4 shows the spatial structure of monthly mean forecast skill over the tropics 

during January as measured by the temporal correlations over all 22 years. Since the 

experiments were initialized on December 15th, the January mean correlations correspond 

to roughly one month lead time, or in other words to forecasts of week 3-6.  

The correlations for ICBC (top panels) give an estimate for the upper bound of 

predictability at this lead time and with this model, since both initial and boundary 

conditions were perfect. The correlations for χ200 (first column) are more evenly 

distributed than that of the other fields, since velocity potential is a very smoothly varying 

quantity. All four variables exhibit maximum correlations in a relatively narrow band over 

the Pacific cold tongue region, coinciding well with the region of maximum ENSO related 

interannual SST variability (not shown). In general, the correlations over the eastern 

hemisphere (0-180ºE) are lower than over the western hemisphere (0-180ºW). The low 

level temperatures show a large region with very high correlations over the equatorial 

Pacific, presumably due to the direct thermal effect of SST forcing on this quantity.  

The correlations for experiments BC and iBC are presented in the next two rows. 

These two experiments were forced with perfect boundary conditions, but were started 

from imperfect initial conditions. The difference of their correlations to ICBC measures 

how much forecast skill can be attributed to boundary forcing alone, and how much skill is 

lost by not having good initial conditions. At first sight, the correlations are very similar to 
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ICBC, indicating that the effects of boundary forcing on monthly averaged forecast skill 

are overwhelming at this lead time interval. A more careful examination, however, reveals 

that the correlations for each variable are almost everywhere smaller than ICBC, and that 

the effects of poor initial conditions are noticeable. Experiment BC has a larger loss in skill 

than iBC, indicating that the adjusted initial conditions of iBC are a better choice than the 

climatological initial conditions of BC. It also turns out that this loss in skill due to poor 

initial conditions is most noticeable over regions which are away from the cold tongue 

region.  

Experiment IC (4th row), which was started from perfect initial conditions, but 

which was forced with climatological boundary conditions, represents the complementary 

experiment to BC. The correlations for IC give a good measure of how much long-range 

predictability can be attributed to the effect of initial conditions alone, and how long time it 

takes for the wrong boundary forcing to overcome the initial condition effects. It is not 

surprising that the correlations for IC are much lower than for ICBC, in particular over the 

equatorial Pacific. It is striking, however, that initial conditions alone produce small but 

non-trivial forecast skill over many regions and for all variables. This is in particular 

evident for the upper level velocity potential, but even precipitation has small regions of 

predominately positive correlations. The correlations for IC are usually larger over the 

warm pool region and over the Indian Ocean, areas where experiment BC had the largest 

loss in forecast skill. Conversely, this is true too. This suggests that, that to first order the 

different predictability effects of initial and boundary conditions are linear, and that they 

can be simply added up to the full predictability field of ICBC.  
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The patterns of predictability for experiment ICP, which was forced with persisted 

SSTs, and which was started from the same initial conditions as ICBC, are shown in the 

bottom row. Even though the correlations are similar to ICBC, one can notice a spatially 

quite uniform decrease in correlations, which can be ascribed to the effect of having lower 

quality boundary conditions.  

The above results confirm earlier studies in that boundary forcing is the main 

contributor to forecast skill in the tropics. However, we also found that initial conditions 

have a small but nevertheless measurable effect on tropical predictability at a lead time of 

one month. The facts that experiments with good boundary conditions exhibited largest 

correlations over the cold tongue region, and that the initial condition effect was most 

noticeable away from this region, suggests that the boundary forced predictability was 

mostly related to interannual SST variations due to ENSO. It is likely that the more subtle 

initial condition effect was offset over this region by the dominating boundary effect.  

To investigate this assumption further, we repeated the above calculation, but 

included only years from neutral to weak ENSO years in the calculation of the temporal 

anomaly correlations (Fig. 5). In this case boundary effects from ENSO related SST 

variability were much weaker, so that the correlations were smaller. This reduction in skill 

was most noticeable over the cold tongue region, whereas other areas were far less 

affected. As expected, by selecting only neutral to weak ENSO years the relative effect of 

initial conditions became more important. This can most clearly be seen over the warm 

pool region, where experiment IC had higher correlations in χ200 than experiments iBC or 

BC. The results for experiment ICP indicate that persisting SSTs during years with weak 

ENSO forcing leads to a stronger loss in forecast skill than when including all years. 
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b. Lead time evolution 

Next, we investigate the spatial AC over the entire tropical domain as a continuous 

function of lead time. Fig. 6 shows the evolution of the ACs in daily increments from day 

16 (Dec. 30th) out to day 92 (March 16th) for the five experiments and four variables. The 

left panels depict ACs averaged over all 22 years (1979-2000), and the right panels show 

average ACs for neutral to weak ENSO years. The ACs were calculated for each time step, 

ensemble member and year, and the results from different years and members were 

averaged using the Fisher-z-transformation. The thin continuous lines in Fig. 6 depict the 

skill of a persistence forecast, which is made simply by persisting day 0 of ICBC for all 

lead times. Note that the correlations at lead times of 32 days correspond to January 

monthly means, which were discussed in the previous section for the temporal correlations.  

First, we discuss what one would expect theoretically for the different cases. 

Experiments with “perfect” initial conditions (ICBC, IC, ICP) should start with 

correlations of close to one. The initial correlations are not expected to be exactly one since 

(1) the initial conditions were perturbed, and (2) monthly averages were taken. Then, as the 

solutions for the individual ensemble members diverge, the correlations should decrease at 

a rate which depends on the quality of the boundary conditions. The decrease for IC should 

be fastest since the anomalous initial conditions are unsupported by the boundary forcing. 

The correlation for ICBC, on the other hand, should be largest since the boundary 

conditions are perfect. At longer lead times the correlations for ICBC should reach some 

asymptotic value, which depends on the strength of the effects of boundary forcing on 

forecast skill. The correlations for ICP should decrease at some intermediate rate as the 

error from using persisted boundary conditions increases in time. For experiment BC one 
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would expect zero skill at the beginning since it starts from wrong initial conditions. Then, 

the correlations for BC should increase and approach the same asymptotic value as ICBC. 

Finally, experiment iBC should show a constant skill in time equal to the asymptotic value 

of ICBC, since in this case the atmosphere is at all times adjusted to the boundary forcing. 

One may expect some temporal variations in this asymptotic value as the strength of the 

boundary forced signal undergoes seasonal variations. In this context the typical seasonal 

variations of the ENSO signal are important, which typically peaks during early winter. 

Fig. 6 shows that the measured correlations for the predictability experiments 

follow quite well the expected behavior. The four variables show different levels of basic 

skill, which is linked to the spatial and temporal variability of their fields. The correlations 

from experiment ICBC reflect the maximum potential predictability with this model. At 

short lead times, the skill is high because of the initial condition effect. After several 

weeks, when the initial condition effect is presumably close to zero, and when mostly 

boundary forcing affects predictability, the correlations reach their asymptotic value. The 

size of this value depends on the type of variable and over which years the ACs were 

averaged: During all years, χ200 levels out at correlations of about 0.7, followed by U850 

at 0.5, and by precipitation and T850 at 0.4. Even during neutral to weak ENSO years this 

boundary condition produced perfect model forecast skill is rather high: 0.5 correlation for 

χ200, 0.4 for U850, and about 0.3 for T850 and precipitation. This indicates that even 

weak ENSO events and non-ENSO related SST forcing lead to a rather high signal to noise 

ratio for the tropical atmosphere.  

The correlations for iBC are generally higher than that for BC, which is consistent 

with the different qualities of their initial conditions. We recall that iBC comes from fully 
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adjusted initial conditions, and BC from climatological initial conditions. The differences 

to ICBC measure how much forecast skill is lost from excluding the initial condition 

effect. Averaged over all variables and time periods, it took about 50 days for simulation 

iBC to approach the same level of skill as ICBC. Experiment BC basically never reached 

the skill of ICBC, not even at the longest lead times.  

The correlations for experiment IC demonstrate how much skill is lost when 

anomalous initial conditions are not supported by boundary forcing. There is a rapid 

decrease in correlations during the first 30 days, and a slow asymptotic descent to zero 

skill thereafter. Zero skill is reached at 60 days or later. An objective measure for the 

relative importance of initial and boundary conditions is given by the time when the curves 

from IC and BC intersect. This time scale indicates how long initial conditions dominate 

are forecast result. It is on the order of three weeks for these experiments and variables.  

The correlations for the simple atmospheric persistence forecasts are indicated by 

the thin continuous curves of Fig. 6. During the first 40-60 days, they were smaller than the 

correlations of experiment IC, indicating that not only simple atmospheric persistence is 

responsible for the initial condition effect. This demonstrates the beneficial effects of a 

dynamical model on forecast skill. It is not surprising that at longer lead times the 

atmospheric persistence forecast had better skill than experiment IC, but the overall 

correlations were very small.  

The temporal evolution of the skill for experiment ICP is shown by the dashed 

dotted curves. The added uncertainty introduced by persisted SST anomalies translates in 

all four variables to significant losses in skill as compared to the skill of experiment ICBC 

given perfect SST forcing. Thus, even though the ocean has a much longer timescale than 
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the atmosphere, the assumption that current SSTs will be an accurate forecast of future 

oceanic conditions does not hold for the purpose of long-range atmospheric predictions. As 

will be discussed in the next section, there exist certain exceptions to this conclusion, since 

the persistent structure of SSTs is in general a function of season, year and region. 

In Fig. 7 we present a year-to-year breakdown of the spatial ACs of χ200 over the 

tropical domain for January monthly means. This time period corresponds roughly to 

forecasts of week 3-6. The years are arranged according to the correlations for experiment 

ICBC (black bars). The rather large correlations of experiments ICBC, iBC and BC during 

ENSO years demonstrate how important interannual SST variations were during those 

years for the good overall skill. It is interesting to note that the correlations for IC were 

surprisingly large during some years - including years when ENSO was in its cold period 

(e.g. 1989, 1999). 

5. Characteristics of the initial condition effect 

In the previous section we found that initial conditions dominated a tropical 

forecasts during the first three weeks, and that even thereafter initial conditions 

substantially affected the forecast. This seemed to be particularly strong over the Indian 

Ocean, and during cold ENSO years. In the following, we investigate further the effects of 

initial conditions on tropical forecasts. 

Fig. 8 shows composites of height-longitude cross sections of the anomalous 

divergent circulation during January. The composites were taken over the four cold ENSO  

years. The plots represent meridional averages from 0-20°S to capture the center of 

convective activity during this time of the year. The patterns of experiment ICBC (top) 

show the typical response to ENSO cold events, with strong anomalous downward motion 
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over the date line, and compensating motions over most other areas. The patterns for IC 

(bottom) show that the atmosphere over the western hemisphere was as expected close to 

climatology, but over the eastern hemisphere the patterns still resembled strongly that of 

ICBC. This means that the atmosphere over the east was much more persistent than over 

the west. We also investigated January composites from warm ENSO years (not shown). 

Curiously, a similar delayed response over the east to the now cooler than normal SSTs 

could not be found. Instead, the circulation of simulation IC during warm ENSO years was 

almost everywhere close to climatology.  

The asymmetric behavior of the initial condition effect between the eastern and 

western hemisphere, and between cold and warm ENSO years, is further documented in 

Fig. 9. Shown is the spatial anomaly correlations of low-pass filtered χ200 separately for 

the two hemispheres and for the different phases of ENSO. The correlations for experiment 

IC (dotted) show that the initial condition effect was stronger over the east than over the 

west, and that it was stronger during cold than during warm ENSO years. During neutral to 

weak ENSO years, initial conditions seemed to be more equally important for the two 

hemispheres. During ENSO years, the correlations for the persistence forecast (thin 

continuous) are generally higher over the west than over the east. The correlations for 

experiment ICP exhibit another interesting east-west asymmetry. During strong ENSO 

years, the loss in predictability from using persisted SSTs was quite small over the west, 

but it was large over the east. This may be related to the fact that ENSO related SST 

anomalies over the equatorial Pacific are usually well developed during December and 

persist throughout the winter. However, the evolution of similar anomalies over the Indian 
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Ocean lags that over the Pacific by about 1 month, so that persisting of SST anomalies 

from December leads to larger errors over the Indian Ocean in the following months. 

6. Summary and Discussion 

We examined the sensitivity of monthly mean tropical forecasts to initial and 

boundary conditions during the boreal winter season at lead times from one to 14 weeks. 

We used a complex numerical model to conduct five predictability experiments with 

different combinations of initial and boundary conditions. When the model was forced 

with observed boundary conditions, the climatological mean and the interannual variability 

of the model atmosphere compared well with observational data. We examined for each 

experiment the forecast skill of four representative variables, which were verified against 

the output of a control experiment with the same model.   

Initial conditions dominated a tropical forecast during the first three weeks, and 

their influence lasted for at least eight weeks. Even though the initial condition effect was 

noticeable over all regions and during all years, it was strongest over the Indian Ocean and 

over the warm pool region, and during years with weak ENSO forcing. All four variables 

showed similar sensitivities. Boundary forcing was the main contributor to forecast skill at 

lead times of more than three weeks. Over the tropics, the average anomaly correlation 

from boundary forcing alone was about 0.7 for upper level velocity potential, 0.5 for lower 

level winds, and 0.4 for lower level temperatures and precipitation. When only weak to 

neutral ENSO years were included, the correlations were about 20% lower. The best 

forecast skill existed over the Pacific cold tongue region, indicative for the dominating 

effect of ENSO related interannual SST variability on atmospheric predictability. Using 

persisted instead of observed SST boundary conditions started to have negative effects on 
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the forecast skill after 2-3 weeks, and led to considerable losses at longer lead times. All 

regions were affected, but the most sensitive regions were the Indian and the Atlantic 

Ocean. Persisted SSTs led to minor losses in skill only over the Pacific Ocean and during 

strong ENSO years. 

When interpreting the results from this study, one has to keep in mind several 

limitations. First, we applied the perfect model approach, so that the results were model 

dependent, and the real atmosphere as well as other models may showed different 

sensitivities. Next, observed ocean boundary conditions were prescribed, which means that 

the future evolution of SSTs was known at the time of the forecast. Finally, the one-way 

coupling of the ocean to the atmosphere by prescribing the SSTs is not very realistic, since 

in nature air-sea fluxes can go in either direction. Therefore, practical predictability, where 

observational data are used as initial conditions and verification, and where predicted 

ocean data are used as boundary conditions, is likely to be lower.   

The question remains what controls the initial condition memory of the tropical 

atmosphere and what sets the time scale of the response to boundary forcing. In general, 

the adjustment to boundary forcing is determined by a combination of dynamic as well as 

thermodynamic factors. Jin and Hoskins (1995) studied in detail the transient dynamic 

response to equatorial heating with a simple dry atmospheric model. They found the 

following chain of events after a specified equatorial heating was turned on: First, the 

heating rapidly induced local equatorial ascent and upper-tropospheric divergence. Then, 

to the east of the heating region fast propagating Kelvin waves appeared, and to the west 

and over the heating region a slower Rossby wave response developed. The waves 

emanated from the heating region, and within one week an equivalent barotropic Rossby 
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wave train propagated from the heating region into and through the winter hemisphere 

middle latitudes. Within the second week wavenumbers greater than 4 were refracted back 

into the tropics, where the waves finally interacted with the tropical atmosphere. From this 

dynamical perspective one can estimate that the tropical atmosphere adjusts to anomalous 

diabatic heating within three weeks or so. This timescale is in rather good agreement with 

the results of our experiments.  

The initial condition effect, and in particular its long tail, can in part be also 

explained by thermodynamic arguments. It is, for example, well established that the ENSO 

signature in the tropical tropospheric mean temperature data is lagged by about one to two 

seasons relative to the SSTs over the Pacific cold tongue (e.g. Newell and Wu, 1992). 

Yulaeva and Wallace (1994) showed that the delay can be understood from a passive 

radiative and thermodynamic response of the coupled atmosphere-ocean system to SST 

forcing over the equatorial eastern Pacific. The long time scale in their simple model is due 

to the specification of a large heat capacity, which is related to the atmosphere plus the 

topmost 10 meters of the ocean. Since our experiments were forced with prescribed SSTs, 

the effective heat capacity is determined by the atmosphere alone, so that the 

thermodynamic adjustment is likely to be shorter.  

The initial condition effect may also be related to a mixture of  thermodynamic and 

dynamic effects, as they are most importantly represented by the MJO phenomenon. By 

taking monthly averages, however, most of the MJO related variability was suppressed in 

the present study, so that those effects were likely to be less important. This became 

evident from the relatively small amount of intraseasonal variability. However, we found 

that the divergent circulation over the eastern hemisphere was very persistent. This may be 
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related to an inherent positive feedback of tropical convection, in the sense that preexisting 

convection can create favorable conditions for further convection. Over the western 

hemisphere this persistent behavior was much smaller, maybe because direct ENSO related 

diabatic heating effects were more important there. This assumption is consistent with the 

success of a simple persistence forecast which was found over this region during ENSO. 

We also noticed that the persistence of the tropical convection was much weaker during 

warm ENSO years than during other years. This indicates that cool SSTs could effectively 

reduce convection, but that warm SSTs did not immediately cause more convection. There 

exist strong qualitative similarities between this result and a recent paper from Tompkins 

(2001). In a comparable experimental design, he investigated the response of a cloud-

resolving model to sudden changes of cold and warm SSTs. Even though this was a 

somewhat different model, he found a surprisingly similar result: Tropical convection died 

out quickly over cool SSTs, but convection did not spontaneously flare up over warm 

SSTs. Instead, convection propagated slowly toward the warm anomaly at a time scale of 

several weeks. Tompkins (2001) concluded that the slow advective adjustment timescale 

of water vapor is key to the memory of tropical dynamical circulations.  

Despite the similarities between this study and previous work, and despite the good  

climatology of the model, we want to emphasize that this study was model based. 

Therefore, one must be careful when interpreting these results for the real atmosphere. 

However, it is important to note that the initial condition effect was closely related to 

convective activity, and therefore to the kind of cumulus convection parameterization used. 

Since modern AGCMs are beginning to use the same scheme as our model (RAS), they are 

all likely to show similar features. Thus, independent of the question of real or artefact, this 
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underlines the need for good tropical observations. Ultimately, this will not only improve 

tropical forecasts, but will have also positive impacts on extratropical long-range 

predictions. 
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Appendix 

Before the forecast skill was calculated, the model data were treated in the 

following way: First, daily climatological means were computed at each grid point by 

averaging over  R ensemble members and Y  years of a specific experiment, i.e.  
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where ),(, xtP yr  represents any predicted model variable for lead time t, location x , 

ensemble member r, and year y. Next, anomalies PPP −=′  were calculated with respect 

to the daily climatology of each individual experiment. We refer to these anomalies as 

unfiltered data. Next, the anomalies were filtered in time by taking 31 day running means, 

i.e.  
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with M=15. This process is simply denoted as monthly averaging. The filtering was 

performed at each location, separately for the simulations of each individual member and 

year.  

 The forecast skill was estimated from correlations between a prediction and a 

verification experiment. In all cases, 10-member ensemble means of the experiment under 

consideration were used as prediction time series, i.e. 
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and individual members of experiment ICBC were selected as verification experiment.   

Using daily model output, two forms of correlation measurements were used: First, 

the spatial anomaly correlation (AC) over the tropical sector, which was calculated as 

follows: Let yP
~

 be the prediction of any experiment, and yrV ,

~
 member r of the filtered 

verification field from ICBC, then  
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defines the spatial AC at lead time t, during year y¸ and using verification member r. dX is 

the differential surface element of the tropical region X; P and V  are the respective area 

averages of P
~

 and V
~

, e.g. ∫=
X
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X

P
~1

. Since R=20 members of experiment ICBC 

were available as verification members, the AC calculations were repeated for each 

individual member resulting in 20 different correlation estimates. 
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Averages of correlations were computed by first using a Fisher-z-transformation 

(e.g. Roads, 1988) of the individual correlations, that is 
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and by then taking the arithmetic average, i.e. 

       ∑
=

=
R

r
yry Z

R
Z

1
,

1
. (6) 

The final result was transformed back to regular correlations, i.e.  
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When experiment ICBC was verified against itself, again 10-member (instead of the 

possible 19-member) ensemble means were taken from ICBC as prediction, and another 

arbitrarily chosen member from ICBC was taken as verification time series.  

The second measure of forecast skill was the temporal correlation (TC) between the 

year to year time series of the verification experiment and the prediction experiment for the 

same lead time. The TCs are given by  
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where L  denotes a summation over the corresponding years. As for the ACs, the 

individual Fisher-z-transformed TCs from using R verification members were averaged, 

and the final result was transformed back to regular correlations. 
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The calculation of variance ratios was done in the following way: Seasonal mean 

anomalies were calculated for each year and member, i.e. 
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where T=107 is the length of each forecast time series in days, and M=15. These seasonal 

mean anomalies were used to calculate the interannual variance of seasonal means, i.e. 
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where L  denotes a summation from i=0 to R*Y. The intra-seasonal variance was 

calculated from 









−
−

−−
=

2

,
2

,, )(
~1

)(
~

1

1
)( xP

MT
xP

MT
xVIS yryryr  ,                      (11) 

where L  denotes a summation over t=M/2 to T-M/2-1. The final VIS was taken from the 

average over all members and years.  
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